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In a series of three talks aimed exclusively at experimentalists, I want 

to discuss high energy hadronic reactions and some aspects of Regge pole theory 

and phenomenology. There will necessarily be some mathematics, but nothing 

very fancy. I’ll assume familiarity with collision theory but nothing more than 

can be obtained by reading the book by Watson and me. 

Lets begin by briefly reviewing the general features of high energy elastic 

and quasi-elastic scattering. Geoff Chew will speak next week about multi- 

particle production. First as to elastic scattering: differential cross sections 

are sharply peaked in the forward direction; this peak is roughly energy inde- 

pendent. Regarded as a function of momentum transfer squared, -t > 0 one finds 

do - exp (t/l 0) (GeV/c)’ and that the scattering amplitudes are nearly purely 

imaginary. There are essentially no indications of diffraction maxima and 

minima, however, and a number of other fine points to which we’ll return that 

one can’t take the pure diffraction theory too seriously. For example, the am- 

plitudes are not purely imaginary --there are significant polarization effects, 

and backward peaks. For inelastic two body or quasi two body reactions one 

finds similarly roughly exponential forward peaking provided particles exist 

which can be exchanged (K- + p + K+ t-F- - no peak), and the same in the 

backward direction. The cross sections for these inelastic 
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processes mostly decrease with energy (like Plab -(l to 4)) 0 

Before going any further into the experimental results and general 

theoretical framework, lets quickly go through some kinematics and scatter- 

ing theory results. 

Define three scalar variables, s, t, u: 

S = - (Pa t Pbj2 = - PC + PdlZ 

General 2-body collision, 

All masses different 

atb-cctd 

Metric: a 0 b = 2. b’- a b 
00 

t = - (Pa - Pcj2 = - (‘b - pd)z 

II= - (Pb - Pcj2 = - tpd - pa)2 

s is the total energy squared in the center of mass system; t is the negative of 

the square of the momentum transfer from a to c or from b to d; u is another 

kind of mommtum transfer. By direct computation, 

stttu = M a2 t Mb2 t Mc2t Md2 f TZ. 

We shall later need another kinematic relation: 

or 

s-u t zl -E v=s+--- 
2 2 2 

t Iz 
-V 

=ll+ ---ii- 2 

as v - -V I- 1 S -l.l 
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In the center of mass system, Fa t PT = 0 = gc t P’ 
d 

and we write P’ = p’= -sb, p’ = p’l= p’ We have then a C d” 

E =w-e = 
a b 

2& (W2 t Ma2 - Mb2) 

E =W-E = C d $w (W2 + MC2 - MdZ) 

where s = W 
2 

23 (x1.9 X2’ x3) = Xl2 t x22 t x32- 2 x1 x2 - -2 x 1 3 
x - 2 x2 x3 

8. g. S(W2, M [W2 - ‘Ma + M,.,)‘] [W2 - (Ma - Ml)2]. The 

scattering angle 0 in the center of mass system may be expressed in terms 

of sg t: 

t = - Pa - Pc12 = Ma2tM 
2 

t 2 pp’ cos 8 - 2 E C aEc 

It is conventional to express the differential cross-section for our 

reaction in terms of a scattering amplitude f cd, ab ( 8, +, W) such that 
, 

dv p’ If I 
2 

dn= p cd; ab 

where in general the amplitude f will depend on spin labels c d a b ; in the 

simplest case of no spins, f = f (cos 19 ), independent of +. Assuming that 

this is the case, or that we have summed and averaged over spins so that 
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there is no Q, dependence to du/dn, we have 

z!!z= 2a d” 
da xi- 

= 2+ IfI2 

Noting dt = 2 p p’ cos 19 

dr m 
dt = 

p2 
I f I2 ; note that the factor which distinguishes in- 

elastic from elastic scattering, p’/p, disappears when we use g rather than 

dr/dQ. 

Instead of the scattering amplitude, f , it is customary in relativistic 

quantum theory to use an invariant amplitude which I shall normalize as follows: 

M= ~ITW f (note that M is dimensionless if 
IT= C = 1) 

so that 

d 1 I I 2 
dt= 

64*W2P2 
M 

1 s 
2 16?rs(w2, Ma , Mh2 

I I M2 

--a 
1 I I M 

2 

16rrs 

Next we recall the important relation 

%ot = $ Irn felastic 
~COS 8 =. 1) 

This result is a truth, independent of any restriction to two-body processes; 

fel is the amplitude for a t b -c a t b, In terms of M, 

.l 
%ot = 2pw 

M ab;ab(e=O)--$ M 
S--CO 
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Note also that for elastic scattering t = 2 P2 (1 -CosQ)so8 = Omeans 

t = 0. Finally I remind you of the partial wave expansion 

’ t21 ’ ‘) fcd.ab (“t w, ‘1 kos ‘1 , 

and in particular for elastic scattering 

f 
1 

=2ip Z (21 t 1) 
[ 

ql e 
2ir1 - 1 

I 
p1 (COS e) 

where 0 S 
T! 

G 1 and r is real, 
I 

This form is a consequence of unitarity 

or conservation of probability, the same thing that gave us the optical theorem, 

and in fact we have 

u el = $dQ jfeL I2 = -$ F (21tl) I ~1e2i’1-l I2 

u 
tot = P 

4a m fel (0 = 0) = z2 
P 

c (21 t 1) (1 - I$ cos 2c1 ) 

-Jr 
a, ---6J =- 

1n t el 
c (21 t 1) (1 - Ti2) 

p2 1=0 

We have heard from Randy Durand about application of another rep- 

resentation of the scattering amplitude which has a certain intuitive appeal, the 

so-called impact parameter representation. One very simple way to obtain this 

representation is to imagine that so many I ’ s enter that one may replace in our 

partial curve expansions the sum over I by an integral 
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+ - $ 7 dt (I t l/2) (e2ibP - 1) PI (~0s e) 

and for large I, PI (cos 0) = J 0 2(L t l/2) sin + and finally, introduce 

the impact parameter b by I t l/2 = Pb, and regard 6p(P) as 6(b,P), so 

that we have 

01) 
f = - 2Wb,P) _ 

el 
iP J obdb e 

[ 
1 1 Jo (2Pb sin e/2) 

CQ 
= - iP s 

2i (b, P) 
- 1 Jo (b p) I 0 

where we have used (for elastic scattering) 

-t = 2P2 (1 -cOse) = 4P2 sin2 e/2 E A2 

The phase 26(b,p) is given the interpretation of the phase change undergone by 

a partial passing thru the interaction region at impact parameter b. 

Independent of the “derivation” given above of the impact parameter 

representation, one may write quite generally for the elastic scattering ampli- 

tude regarded as a function of s and t (or A’) 

fel (s,t) = P Lmdbb H (b, 4 Jo (b fi 

= P Jr bdb H (b, s) J (b A) 
0 

Q 
el = 2n JoTdb 1 HeI tb, s) 1 2 
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co 
=t = 4lr s 0 bdb Im HeI (b, s) 

cr. = 
in 

2n Jo;db { 2 Im He1 

The beauty of the partial wave expansion is that unitarity is easily 

expr es sible: Im fp = lfel I2 t Im feinelastic and .*. Im fl ) 1 fm I2 

or f I I - i/2 I2 < l/4. There is no correspondingly exact statement about 

- 1 2iZ 
H (b, s) except at very high energies where H (b, s) = z [q (b, s) e - 11, 

With this background lets talk in a little more detail about high 

energy hadron scattering. The total cross-sections lie in the range of about 

15-60 mb. at the highest energies, corresponding to PLAB - 25 GeV/c, 

r.- ,+- 15 
PP 

‘=-50,Q =“r 
PP Pn 

-40,a -Jo- 
=-P “‘P 

- 25 mb, cr 
K--p 

- 20, o- 
K+p 

mb. They seem to be approaching constants or decreasing very slightly. The 

constant behavior is consistent either with the view that the radius of interaction, 

2 
whatever that means, is finite and u - to R with R - 1 /msr = -?- 2 x lo-l3 cm. 

or with the idea that the radius increases with energy but the transparency de- 

creases in such a way as to maintain a constant cross-section, There is no 

terribly convincing argument leading to the constancy of cross-section although 

as we will see there is a natural place for it within the framework of Regge pole 

theory and the following qualitative argument which almost leads to constant 

cross-sections due to Froissart and, independently, Feynman: One imagines 

the probability of interaction between particles at relatively large distances is 

expressed by g e 
-r /a where g may be a function of kinetic energy and that if r 

is so large that g e 
-r/a-CL 1 

there is essentially no interaction, Then for 
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rXb suchthatge 
-b/a - 1, b- alng, rw aa’ (In g)’ and if g is at most 

a power of the energy, 

u - 7Ta 2 (ln s)2 

This result has also been obtained using the finest axioms of quantum field 

theory. 

Another general feature of high energy total cross-sections that 

Q (particle - particle) -c (r (particle - anti particle) at very high energies. That 

this should be true was first suggested by Pomeranchuk and whether this relation 

is in fact rigorously true is quite important to theorists, It is not trivial to test 

the Pomeranchuk experimentally as can be seen as follows: 

at (1r*p9 = a + b f 

where the present data up to about P lab 
= 25 BeV/c has been fitted with the 

parameters 

a = 22.57 mb, b 
t 

= 24,51 mb, b = 19,55 mb. 

pO = 1 BeV/c, m+ = 1.02 , m- = -664 

cr(s-1) - c(f) becomes less than present errors for each - . 1 mb at 

P 
lab 

= 4000 BeV/c or Pcm ry 45 BeV/c. 

It has been suggested that cross-sections go to zero at high energies 

like Plaben where n =” 0.07 (Bond factor). Serpukov should show this because 

rla” should be down by about 2 mb from 20 to 70 BeV/c, 
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Lets talk a little more about the interaction range in terms of the 

impact parameter representation. We might say that this quantity is such 

that 

H (b, s) = 0 for b>R 

while R of course might depend on s in principle. 

Now the crudest model of scattering is to assume that for all 

b 4 R, the scattering is completely inelastic, so that in terms of 

H.(b, s) = f [ q (b, s) e2i’(b9 ” - 1 ] , 

q (b, s) = 0 and 

H (b, s) = t i for bL R 

Thus 

= o for b >R 

f,l(s,t) = iP soRbdb Jo (b $9 

4a Im fel 
4a R 

tot = P tot = P s obdb = 2~ R2* 

‘This is an exceedingly crude model and doesn’t fit the data very quantitatively. 

Lets turn now to a discussion of elastic scattering. Within the frame- 

work of our black disk model, 

R J1 (RA) 
f = 

el 
iP J bdb J (bA) = iP R2 0 0 RA 

21 - fi: iPR ze 
$R” A2 , provided AR (4 1. 
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h, 2 
Q 

el 
= s R for large energies. 

Thus a pure imaginary amplitude which decreases exponentially for small t 

with loagrithemic slope (R/ 2)2, uel/rtot = l/2; should show dips and bumps - 

dip - -t = 0.7 (BeV/c)2 bump at - 1 (BeV/c)2 if R = 10 -I 3cm . These pre- 

dictions of the black disk model are not borne out by experiment except in a 

very crude way. For TT - N scattering there are indeed dips (t - .8) and 

bumps (t - - 1,4) at rather low energies (Pa - 2 - 4 BeV/c) but at higher 

energies the structure disappears and for Pm > - 5 BeV/c, 

(At t Bt2) 

= e 

gives a very good fit for 
I I 

t <l- 1 o 5 (BeV/c)‘. 

A and B are approximately energy independent and are both negative. 

10 (BeV/c) 
-2 

A- ) B/A2 4, .03. 

0 

a- = 
el s 

dt d- uel duel 
-4PZ dt 

z 
dt 

(t = 0) 0 + 

If we make the assumotion that the scattering amplitude is pure 

imaginary, from 

duel 7r 2 - -=- = 
dt 

P2 I I 
f 

el 
A ;rel e At 

we find 
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1 
e z At 
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and thus 

4n 
=t= P Irn fel 

=m 

or 
2 

A 
ut 

=Iblrcrel ; 

u 
f el =4iP A - 112 At 

el 
e 

=t 

In terms of these parameters, the quantity H (b, s) which entered out impact 

paramater representation is 

u 
el - b2/2A 

H (b, s) = 4 i - e 
=t 

It is clear that the wiggles in the simple diffraction model were caused by the 

sharp edge of our disk and these are quite absent in the present “gaussian” 

model. 

By comparing the disk model with the parameterization we have 

adopted here, A = 
R 2 
7 

, there is now, however, an additional parameter, 

u 
namely el/ “t K 1 which is l/2 for the disk but experimentally ranges 

from about 0.3 to 0,15, It is larger for those processes which have the 

fewst inelastic channels e. g, pp vs. pp. 

There are two important qualifications that must be made in.connec- 

tion with the description of elastic scattering we have given so far: the first 

is that the scattering amplitudes are not pure imaginary and the second is that 



-12- TM-128 
2050 

spin effects are important and lead to measurable polarization, As is well 

known, the real part of scattering amplitudes has been measured by Lindenbaum, 

Yuan and co-workers. The ratio 
Re fel (8 = 0) 

/ Im f el 
3 y < 0. ranging 

from o 3 to e 1 for all processes; somewhat smaller for r N than for NN or NC. 

In the former case the analysis is quite clean and in good agreement with the 

prediction from the forward dispersion relations physical model, 

Polarization has been measured in T p and pp scattering; in the 

momentum transfer region 1 t I< (BeV/c)2, they range up to about 20% for 

r p and to about 0,l for p p and show considerable structure in the 7~ p case. 

I shall not discuss at this time the inelastic or quasi-two-body reac- 

tions, but a table summarizing some of their important properties is included 

her 8. 

To summarize: important problems to be settled in connection with 

elastic scattering and total cross-sections are: Do cross-sections tend to 

constants 3 Is Pomeranchuk theorem true? Do diffraction peaks shrink? 

I want now to turn to the so-called Regge pole model of high energy 

processes. This treatment will necessarily be rather brief but will hopefully 

serve as an introduction to Geoff Chew’s lectures of next week and remind you 

of some of the experimental and theoretical problems involved in the model, 

We begin by recalling the kinematics of the two-body process 

utb-ctd 

ptn- P + n, say, which we choose 

for definiteness. 

This is described by an invariant 

amplitude 
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M (PC, Pd ; Pa, Pb) = M (s = (Pa t Pbj2, t = - (Pa - Pc12 

This is called the s-channel reaction. Now consider the process ‘;; + n -. p + p 

which we write as d t b - c t i and the momentum conservation is P t P -c 
z b 

PC+ P ; bars refer to anti-particles, This would be described by an ampli- - 
a 

tude Ji which we would write as 

E (pc p:, ; P,, pb) 
a a 

Crossing symmetry says that these two functions are reked according to, 

=G (PC P, ; P Pb) = M (PC, - P ; - P,, Pb) 
a 

Ti 
a a 

The process 11 t n -- p t F is called the t-channel reaction. This is a somewhat 

subtle relation and is really defined by an analytic continuation in the following 

way : For the s-channel reaction 

S = - (Pa t Pbj2 > 4 m2 

t = - 2 P2 (1 - z9, -4P2<t < 0 

In the t-channel, t = - (Pb - PdJ2 - - (‘b + p_,2 
d 

= 4 (Pt2 t m2) 7 4 m2 

S = - (Pa t pb, - - lpb - '-I2 d 4 't2 

a 

a z - (pc + pdf - - ‘% - pc)2 

= - 2Pt2 (1 - cos $9 
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We have one function M (s, t) that describes both reactions and we can go from 

one to another by analytic continuation along some path,, 

Now in the s-channel region, we may imagine expanding M (s, t) as 

M (s,t) = x (28 t 1) fl s (s) Pm (cos 0 ) 

or in the t region 

M (s$) = c (21 t 1) f1 

where 

J 

_1---. 
87r. 2 

.pz 
M2 t Pt2 

I Pt 

4 

In non-relativistic quantum 

$9 Pi (COS 8) 

e 2i 09 _ l 

2i 

theory it was shown by Regge that the 

fI” (t) could be extended to a function of complex I , f (1, t), which coincides 

with fm (t) for integer I and which has only poles in the complex I - plane, 

.I! = a (t), which move with t 0 

i. e. 
pi (t9 

f(V) = 1 ma(t) t 0.. 
i 

In relativistic quantum theory there is good reason to believe that there are 

branch points in the I -plane as well as poles and we’ll return to this point 
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a (t) = Re a (to) t (t - to) Re a ’ (0) t i Im a (to) t . . . 

f (“3’ t, = 1 - Re a (t 
P F9 

0 
) -Re a’(0) 

i! 

t-toti Im fJ. 6,) 

Re a ’ (to) 

Nsw if Re a (to) = integer = I , (L 

f “- e-f-$+.& 
0 

where 

F/2 = 
Im a (to) 

Re a ’ (to) 
Breit-Wigner shape, 

If Im a (to) = 0, stable 

particle or bound state, 

It is an article of faith that all particles and resonances, stable or unstable, 

lie on Regge trajectories I = ai 0 

Now the trick is to use the t-channel partial wave expansion trans- 

formed in such a way as to allow us to study, with the aid of the crossing 

relation, the behavior of the amplitude in the s-channel for large s. To do 

this we write 

M (s,t) = c (21 t 1) f (1, t) Pp (cos Q 9 

i 
(21 t 1) f&t) Pp (- cos et9 

= - 
2 s dl sin a1 
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Write cos 0, = Zt 

i 
-l/Z t i co 

= 
‘j: s d.t (21 + 1) f t&t) 

sin Pl 
p ( 

-l/2 -ioo I - Zt) 

-C 
r (2cLi t 1) pi (t) PUi (- Zt) 

i Sh.yUi (t) 

where we recall Z t 
=l t+ 

2Pt 

The utility of this represenration stems from the fact that the asymptotic 

form of PO (Z) is Z”‘(J t 0 ‘l/Z w ) provided Re a 2 - l/2, It is reasonable 

to assume that the line integral goes like Z- 112 or like s 
-l/2 

for large s and 

thus will be smaller than the Regge pole contribution. Needless to say in the 

t channel, 1 Zt 1 Q 1 but we are contemplating an analytic continuation 

from the region s <otos >4M2; the poles ai correspond to resonances 

and bound states in the t channel which thus relate such states to the large s 

regime. In the physical s--channel region t < 0 and ai is generally 

assumed to be real. 

We write the asymptotic form 



where 

M(s,t) -L sin nai(t) 

ai (t) 
y 0 PI 
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The reduced residue Y i(t) shares the analyticity of ai (t) namely of having 

only a right hand cut, 

-i aai (t) y i (t) 
A (s,t) - ax e 

sin rai(t) 

s-plane. 

phase decreases by W, hence 

(-1)” = eBiaa 
for s neg 

There is a refinement of these equations necessitated by the inevitable 

presence in relativistic quantum theory of what are essentially exchange 

potentials, One must treat even and odd angular momenta differently: 

M (s,t) = Iz (21 t 1) f (I$) 
i 

pi (Z) + pi f-Z) PI (Z) - pi 1-Z) 

2 + f&t) 2 

The potentials being different for odd and even I means that the Regge poles 

associated with them are different and we have for the asymptotic form 
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M (s,t) - - n c 
Yis (t) 

sin 7rc 

(s’so)ai+ 1 e-iq,t(t)t 12ir 

i+(t) 

- (s/so) ai 

c-r x Yi e - iaai-(t) _ 1 

sin n Q - 
i 

i 1 
2 

We refer to these as positive and negative signature (sig = (- l)J for 

boson, (- 1) J WA l/2 for fermion), 

Ifa 
t 

i + odd integer, no pole in amplitude, hence no particle, 

a.. + 1 
even integer, no pole in amplitude, hence no particle. 

Now suppose the highest trajectory, namely the one which has 

the largest Re a and hence the one which dominates as s -c a has 

positive signature: 

M (s, t) - - v (t) R + 
a b9 

0 0 

-iTra 
e t1 
2 sin 7r a (t) 

-i 

P9 
, ReM= - tn Ta 

2 

o- p h-n M(s,O) = =y (‘L 
t -6 

2s0 
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Now to get a total constant cross- section, this highest trajectory must 

pass through 1 at T = 0, which implies Re M -, 0. This is the so-called 

Pomeranchuk trajectory and is assumed to carry the quantum numbers of 

the vacuum. The fact that such a trajectory can be exchanged between 

any two systems will automatically yield constant total cross-sections. 

Iwe had conjectured odd signature, 

-ilrra 
e -1 = 

sin 7ra, tan 9 - i 

We would have had Re M (s, o) = co if c (0) = 1 

which is unacceptable, 

Another argument in favor of the even signature for this highest 

(Pomeranchuk) pole is the following. Consider the two reactions 

a-t b eatb t-channel 

cos 6 t ” . ” 

cos l9 =p’ t a’ 
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In the second reaction, cos 19~ has the opposite sign from the first; if however the 

Pomeranchuk trajectory has positive signature, the contribution of such a trajectory 

to either process will be the same, so that a b and a b will be the same since we have 

P (- cos Ot) t Pa (cos Ot), unaffected by cos 19, + cos 8,. 
a 

Notice, incidentally, that a negative signature trajectory makes a 

contribution equal in magnitude but opposite in sign to a b -c a b and ab -c a b. The 

same is true in any two body process: 

a+b+ctd 

:tb *:td 

If we imagine that the asymptotic region is completely described by 

the exchange of a single Regge pole, then because the residue of a pole must barring 

accident factor which means that in a process like a t b -, a t b we may think of it 

as 

aaP 

b 

described by - =P ab;ab 
sinaa 

P ab;ab = ’ ‘bbP aaP 

-17To 
-1) .s 

a 0) 
(e 

2 
( ) 

ZPtqt pt2 = + - Ma2 

a (t) 
P aa;aa 

0 

$7 
t/ 
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‘bb; bb 

P aa; aa 

pt2 

2 

P bb; bb 
2 

= 

gt 

'a u - -0 p2 t=o 
Y u o- = (‘J -15 mb 

lm PP 

NOW ask about el according to the Regge model: 
dt 

dF 1 
I I 

2 
dt= 16a s2 

M 

where g (t) is made up of constants and the reduced residue. If a (t) = 1 t a’ (0) t, 

we get the famous shrinkage of the diffraction peak: 

duel - = g (t) e 
2cL’ (O)ln (s/so) . t 

dt 

u g (09 
el = 2a’(O) In (s/So) 

Thus another interesting quantity will be 
duel 

- = 
=t 

l/2 in optical model, 

. l-5 to .3 in practice and should slowly approach zero in Regge theory. 

The final topic we will consider today is that of how one goes about isolating 

the Regge trajectories which can contribute to a given process. These depend upon 
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the quantum numbers which can occur in the t-channel. Examples 

Consider states of definite isotopic spin 1 I, I3 7 

e+in12 1 I, I32 = ewi*(‘+‘3) 1 I, -I3 ? 

Rotation about l121’ axis 

Recall Q = I s 
-t i ‘(B t S) 

so if Q = B = S = 0, I = 0. 3 

R 1 I, 0 > = emiT 1 I, 0 ‘>. 

= (- l)I 1 I, 0 2 l 

Consider nt t p : 

t channel in pp 

s = 0, B = 0, I = 0,l 

P, 0 r P q AZ. . . 

t channel has ITT 

s = 0, B = 0, I = 0, 1, i: 

G=tl I= 2 is out for 
PP 

G = t 1 means only p, 
% p 

R 1 a+/ ) = 1 T- n+ 7 = (-1) ’ 1 $ n- 7 



t tr 

From standpoint of s 

M (T+ p) t M (w- ) = (1 t (-l)I) 
in s-channel. 

only I = 0 survives 0 

M (rf p) - M (a- p) = (1 - (-1)’ 

only I = 1 survives. 

u(s-p*aN)w r(r’p) -k cr(n-p) = bp S aP-l + b 
PS 

aP1 - 1 

u cnf P) UP-P) = bp S 
aP - 1 

u (w* p) have p contribution with opposite sign. Similarly con- 

sidering R on the t charinel states of 
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We find 

Thus 

UP4 - r (pP9- s 
a,(O) - 1 

Use G parity. 

Consider p p: 

and G = CR = 

GR pp > = G(zn> = I 

& GR ;;p >= 
I 

G (-1)’ 1 - 

I PP 

PP > 

> 
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. 
h 8 ‘J (P P) f u (p p) contains (1 f G (-1)‘) 

t- channel things. 

Take Q (P P 9 - u (P P) ,‘. G (-1) ’ G = -1 
0 

I 0 = 

G = tl 
P 

I 1 = P 

For run G (-1)’ = tl 

G = $1, I = 0 pomeron 

G=l,I=l A, 
L 

Use just G: 

G inn,= 
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, ‘.* Q tn 99 - v (p F) has (1 - G) - t channel things 

sum has p . % rnTT) A2 

(doesn’t contribute) 

In practice: 

u (PP) - u (pp) = 2 Im 0 

Thus forward amplitudes: 
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A2 not good, 

cuts. 


